Highest vectors of representations (total 7) ; the vectors are over the primal subalgebra. | g−2 | h2 | g2 | g6 | g7 | g8 | g9 |
weight | 0 | 0 | 0 | 2ω1 | 2ω2 | 2ω1+ω2 | 2ω1+ω2 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | −4ψ | 0 | 4ψ | 2ω1 | 2ω2 | 2ω1+ω2−2ψ | 2ω1+ω2+2ψ |
Isotypical components + highest weight | V−4ψ → (0, 0, -4) | V0 → (0, 0, 0) | V4ψ → (0, 0, 4) | V2ω1 → (2, 0, 0) | V2ω2 → (0, 2, 0) | V2ω1+ω2−2ψ → (2, 1, -2) | V2ω1+ω2+2ψ → (2, 1, 2) | ||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | ||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
| Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
| ||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | 0 | 0 | 2ω1 0 −2ω1 | 2ω2 0 −2ω2 | 2ω1+ω2 ω2 2ω1−ω2 −2ω1+ω2 −ω2 −2ω1−ω2 | 2ω1+ω2 ω2 2ω1−ω2 −2ω1+ω2 −ω2 −2ω1−ω2 | ||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | −4ψ | 0 | 4ψ | 2ω1 0 −2ω1 | 2ω2 0 −2ω2 | 2ω1+ω2−2ψ ω2−2ψ 2ω1−ω2−2ψ −2ω1+ω2−2ψ −ω2−2ψ −2ω1−ω2−2ψ | 2ω1+ω2+2ψ ω2+2ψ 2ω1−ω2+2ψ −2ω1+ω2+2ψ −ω2+2ψ −2ω1−ω2+2ψ | ||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M−4ψ | M0 | M4ψ | M2ω1⊕M0⊕M−2ω1 | M2ω2⊕M0⊕M−2ω2 | M2ω1+ω2−2ψ⊕Mω2−2ψ⊕M2ω1−ω2−2ψ⊕M−2ω1+ω2−2ψ⊕M−ω2−2ψ⊕M−2ω1−ω2−2ψ | M2ω1+ω2+2ψ⊕Mω2+2ψ⊕M2ω1−ω2+2ψ⊕M−2ω1+ω2+2ψ⊕M−ω2+2ψ⊕M−2ω1−ω2+2ψ | ||||||||||||||||||||||||||||
Isotypic character | M−4ψ | M0 | M4ψ | M2ω1⊕M0⊕M−2ω1 | M2ω2⊕M0⊕M−2ω2 | M2ω1+ω2−2ψ⊕Mω2−2ψ⊕M2ω1−ω2−2ψ⊕M−2ω1+ω2−2ψ⊕M−ω2−2ψ⊕M−2ω1−ω2−2ψ | M2ω1+ω2+2ψ⊕Mω2+2ψ⊕M2ω1−ω2+2ψ⊕M−2ω1+ω2+2ψ⊕M−ω2+2ψ⊕M−2ω1−ω2+2ψ |